Food chain resilience in a changing world

A few weeks ago, we were joined by experts and industry leaders at our biennial Government Chemist Conference, and this year’s theme was ‘Food chain resilience in a changing world’.

Attendees were treated to a variety of presentations about food chain resilience from Food Standards Agency, Public Health England, the European Commission’s Joint Research Council, Cambridge University, and many others.

Topics ranged from food crime to genome sequencing and genetics, as well as preparing the food industry for Brexit and systems for fighting fraud.

Among some of the popular topics discussed were meat speciation techniques and food authenticity, which underline current issues surrounding consumer trust in food manufacturing.

Methods for detecting trace amounts of undeclared ingredients in food have evolved enormously in recent years, but incidents still occur. Recent reports suggest that some ‘meat-free’ ready meals have even contained trace amounts of meat, although the exact amount and method of transfer have yet to be determined.

Any food used as an ingredient in a pre-packed processed product, (i.e. in the ‘recipe’) must be declared in the list of ingredients. Adventitious meat cross contamination isn’t generally regarded as deliberate fraud under 1 %. But even below this ‘cut-off’ point there are implications for consumer choice, especially if avoiding meat (vegetarian or vegan preferences), or specific meat species for religious reasons.

When ‘trace’ amounts of a material have been found in food, it suggests adventitious cross contamination (which could be obtained from inadequate cleaning of equipment, for example), rather than intentional adulteration. Particularly with foods that contain many ingredients, like ready meals, this could come from any of the ingredients at any point along the supply chain.

This makes the methodology of detection that much more important, as each technique has its own level of accuracy. For instance, Polymerase Chain Reaction (PCR) screens for the absence or presence of specific DNA within a defined limit of detection, which would require the scientist to know what to look for. Care is required in carrying out these tests and interpretation of the results.  Meanwhile, Next Generation Sequencing (NGS) detects and sequences all DNA material in a sample, which allows for a greater understanding of the makeup of foods. Once the NGS finishes its analysis, millions of sequences can be analysed to identify species, but this method is more expensive and can be resource intensive.

These are just two examples of methods used recently to determine authenticity, but there isn’t uniformity in methods and standards around the world. Now that we are becoming more globally focussed than ever before, in both trade and knowledge sharing, there should be more harmonisation among techniques used in different places. Food supplies might cross several different borders before becoming food; processed, tested and analysed with different standards. It’s important that we have robust systems in place to ensure that food standards and methods for measurement are equal and that all food is both safe and exactly what it claims to be.

And many of the speakers and attendees of the GC Conference are working toward that goal, sharing their expertise on sound science, building systems for detection of fraud, and enforcing stronger regulations for food safety.

Watch the video from the conference, or you can learn more about the speakers and see their presentations here.

Food Safety Week and beyond: LGC’s long history in food testing

Food Safety Week, organised by the UK’s Food Standards Agency, is an opportunity to learn more about current food issues, including food crime, compliance and food hygiene. This year’s campaign celebrates “the people who protect your plate” – the workers who ensure the UK public can trust the food they eat, including inspectors, local authorities, and public analysts.

Also at the forefront of the fight for food safety are chemists, who analyse food, drinks and supplements to ensure manufacturers can verify the safety of their food products.

tea_world food day

The original Government Laboratory plaque and tea samples.

Consumers trust that when they buy food and drink, they are getting exactly what they’ve been told they are getting.  Each food has a distinct composition, much like its own fingerprint, and with the right expertise and tools, it’s possible to study these foods to determine their authenticity.  LGC has been involved in food testing for over 175 years. In fact, it’s the very reason we were established. In 1842, the Board of Excise needed a scientific authority to see that goods, like tea, tobacco and spirits, were not adulterated for profit, and so it created the Government Laboratory.

The Government Chemist role was created in 1909, to ensure the Laboratory of the Government Chemist could work independently of the Inland Revenue department (which provided staff to the Laboratory) and the Board of Customs and Excise (which controlled it). Nowadays the Government Chemist oversees the statutory function of referee analyst, resolving disputes over analytical measurements, particularly in relation to food regulatory enforcement.

As LGC grew, so did our roles involved in food and feed testing. Not only are we involved as the referee analyst for disputes in the food industry, we also provide products and solutions to food safety-related issues.

In order for food producers to know with certainty that their food is authentic, it’s necessary to compare what they’ve produced with a known and verified version of the food – this is called a reference material, or standard.  Currently, we have over 15,000 reference materials for food analysis, for everything from allergens, contaminants, and toxins to food flavourings, dyes and proteins, and much more.

Chemists also study new methods of authenticating foods, including via mass spectrometry, which is considered to be the gold standard in analysis, especially when combined with chromatography. Mass spectrometers analyse a sample’s elemental molecular weight, which is its ‘fingerprint’.  The tools and expertise of the National Measurement Laboratory at LGC allow our measurement scientists to be accurate about the content of a sample to up to one part per quadrillion. In other words, we can detect one lump of sugar dissolved in a bay.  These capabilities allow us to work on specific projects, tailoring our research to benefit many different sectors and solve specific problems.

This was particularly evident during a recent case studying selenium within food products and supplements.  It is essential that the correct amount and species of selenium is present in order for fortified food products and supplements to be safe for human consumption.  Selenium-enriched foods and supplements have become more prominent in Europe since it has moved to using more wheat that is naturally low in selenium.

However the accurate measurement of total selenium in food and food supplements presents analytical challenges due to the complex nature of food samples. Furthermore, selenium speciation analysis presents additional challenges due to the low levels of each specific selenium species and the molecular complexity of such samples.

LGC’s measurement research team for inorganic mass spectrometry has extensive experience in selenium speciation and was able to develop and characterise a range of reference materials, including a matrix selenium-enriched wheat flour standard, to support the food industry.

With over 175 years in the food testing arena, we have a lot to say about the subject, so if you want to learn more, head over to our website where you can read case studies and learn about our reference materials.

You can also join us at next week’s Government Chemist Conference, where we will be discussing current food safety issues at length, including Brexit, food authenticity, and food regulation, with many experts in their fields, including the FSA themselves. Visit the conference website to view the entire programme and register.