Every DNA counts – and we would know

The National Measurement Laboratory at LGC turned 30 years old this year, and to celebrate we’ve been looking back at notable accomplishments, and looking at where we are now. Clinical measurement is one field where our scientists have excelled and innovated throughout our time.

biology-clinic-doctor-4154Clinical measurement “is the development, use, on-going support, and maintenance of technology for diagnosing, aiding or treating patients.” Modern medicine wouldn’t be possible if we couldn’t rely on the accuracy of clinical tests and diagnosis. Poor measurement can lead to misdiagnosis, incorrect prescription and dosage of medicine, or false interpretation of data. Therefore, reliable certified reference materials are absolutely necessary to ensure the quality and accuracy of clinical measurement.

Throughout the last 30 years, the National Measurement Laboratory (NML) at LGC has worked in this area to ensure that testing methods and reference materials are of the highest quality.

In one case study from 2006¹, scientists in the NML developed isotope dilution liquid chromatography-mass spectrometry (IDMS) methodologies that were then used to generate reference values for clinical reference materials (CRM), some of which led to the analysis of creatine in frozen serum and testosterone in frozen serum CRMs.

In another blog post, we outlined the work we’ve done to improve Alzheimer’s diagnosis, which could lead to techniques for earlier diagnosis of the disease, and in another, we illustrate the importance of harmonising newborn blood sport screening tests to ensure infants are diagnosed and treated early so that they can live as normal lives as possible.

An important part of working in the field of clinical medicine and measurement is communicating our knowledge with other scientists and medical professionals to ensure that good measurement is being performed consistently across the board. We have worked with the NHS and England’s Chief Scientific Officer Sue Hill on doing just that as part of the Knowledge Transfer Partnership Programme, which aims to improve patient care through new approaches to measurement.

And now, our scientists can even count DNA and measure changes to that DNA over time. Identification and targeting of specific genetic sequences forms the basis of many promising advanced healthcare solutions such as: precision (personalised) medicine in cancer, gene therapies to end genetic disorders in children and the detection of pathogenic and non-pathogenic bacteria in a wide spectrum of infectious and autoimmune diseases.

However, the new methods and technologies currently being developed will only achieve their full potential if we can ensure they are safe and can be reproduced. High accuracy reference methods are one of the key factors in supporting their development into routine application.

Using tests for guiding treatment of colorectal cancer as a model, our scienists outlined in a paper published in Clinical Chemistry how a range of dPCR assays and platforms compared and how precisely they measured the cancer mutation. An inter-laboratory study of clinical and National Measurement Institute laboratories demonstrated reproducibility of the selected method. Together these results reveal the unprecedented accuracy of dPCR for copy number concentration of a frequently occurring gene mutation used to decide on drug treatment.

This study has shown that using high-accuracy dPCR measurements can support the traceable standardisation, translation and implementation of molecular diagnostic procedures that will advance precision medicine.

All of this just goes to show you how far we’ve come in 30 years!

¹VAM Bulletin, Issue 35, Autumn 2006, pp 13. ‘Case Study 3: IDMS certification of clinical reference materials using LC-MS/MS”

Revolutionising cancer treatment one Array at a time

While the science of pharmacogenomics has been around for years, its popularity is starting to pick up steam as precision medicine and how we treat individual patients becomes more and more common place in the medical world. Geneticists and doctors are fully embracing the fact that our individual genes make us all unique and that these genes hold clues to how each patient’s body will metabolise medications.

Pharmacogenetics, or the study of how people respond differently to medicines due to their genetics, is making a splash lately thanks to companies like Minneapolis, MN-based OneOme, which co-developed its RightMed test with Mayo Clinic. The company collects a patient’s DNA sample using a simple cheek swab that is then analysed at OneOme’s lab with PCR – in this case on LGC’s IntelliQube® – to determine the patient’s genetics.  This information is then used to determine whether the patient has any genetic variations that may cause them to have a certain reaction to a medication. These results give doctors “graphic genetic pinpoint accuracy” on the medications that should work and those likely to be less effective. In simplest terms, these tests, combined with PCR instruments are empowering patients and doctors with information that may not only make their lives better, but also safer. Or as we like to say, science for a safer world.

Take a look at just how much pharmacogenomics is impacting and “revolutionizing” patient care by watching the video here, or visit our website.

 

This story was originally published on the Biosearch Technologies blog.

Science for a safer world

In the twenty-first century, science has been brought to the forefront, informing all aspects of our lives. In order for it to make our world safer, it’s especially important for science to remain steadfast, reliable and responsible. Science should not have an agenda; science is the agenda. It should not be informed by policy or opinion, but should inform policy and opinion. And at LGC, we work to ensure that our science does just that.

From our origins testing tobacco, alcohol and food products for adulteration in the 19th century, LGC has built a commitment to using science for a safer world.

This commitment underpins all of what we do. From testing drinking water and the quality of food to researching medicines and diagnostics, we work to ensure both our customers and the public benefit from our knowledge. Our scientists develop accurate methods for detecting infectious and congenital diseases and we test more than 6,000 products and supplements for banned substances, certifying that they are safe for athletes at all levels to use.  In our role as UK designated National Measurement Institute for chemical and bio-measurement, we solve measurement challenges in diagnostics, food safety, cancer research and environmental testing. At the heart of everything we do is the question, How can we make the world safer?

LGC is also looking to the future, to advance research, technologies, solutions and medicines that will build a better, more secure future.

Now, through this blog, we hope to bring our science to you, shedding light on the vital work we do every day.

What does ‘Science for a safer world’ mean to you?